
Evaluation of Algorithms for Group Recommendation
Systems with Top-K Restrictions.

Leonardo Antonetti da Motta a, Ladislav Peska b.

a Institute of Mathematical And Computer Sciences, University of São Paulo, São Carlos, Brasil, l.a.motta@usp.br

b Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, Prague, Czech Republic,
ladislav.peska@matfyz.cuni.cz

Abstract. Recommender Systems (RS) are used as a means to assist users in getting proper

recommendations, when considering various items that can be matched to an individual

user. Group Recommender Systems (GRS) generally work off of the results of RS, under the

lenses of a group of users requiring a unified list of recommendations that satisfies all

those users to a certain extent. The performance of GRS has been relatively varied across

different group recommendation algorithms, and between coupled and decoupled modes of

evaluation. This is especially evident when GRS suffers from lack of explicit information

regarding individual users within a group. We use a previously implemented set of GRS

algorithms while also implementing three additional algorithms to this set, and evaluate the

whole set of algorithms with multiple randomly chosen groups with varying individual user

ratings. We repeat the results with different top-k restrictions on individual user ratings to

observe the impact of limited user information on each algorithm. While lower top-k values

favoured algorithms such as MPL and EPFuzzDA, higher top-k values favoured algorithms such

as MUL and LMS. When using top-k restrictions that were below the total number of expected

recommendations, the MUL, LMS, and GFAR algorithms could not offer significant results.

Algorithms such as MPL, FAI and AVGNM remained relatively consistent regardless of top-k

restrictions. These results, when compiled, could be skewed by different definitions of ‘fairness’

in regards to evaluation. Regardless, the top-k restriction has a significant impact on the

performance of a given group recommendation algorithm, considering the metrics observed.

Keywords. Group Recommendations, Recommender Systems, Fairness, Evaluation.

1. Introduction
In recent years, Recommender Systems (RS) have
gained significant attention as a means to assist
users in finding relevant and personalized items,
such as movies, books, products, and services. While
traditional RS focus on generating recommendations
for individual users, Group Recommender Systems
(GRS) aim to generate recommendations for a group
of users, taking into account their collective
preferences and needs. According to Konstan and
Riedl [1], GRS can be used in various contexts, such
as social networks, e-commerce platforms, and
collaborative work environments, where
recommendations that satisfy the preferences and
interests of all group members are crucial for
enhancing user satisfaction and engagement.
However, designing effective and fair group

recommender systems poses several challenges, as
pointed out by Shani and Gunawardana [2], such as
the need to balance between individual and group
preferences, handle potential conflicts and diversity
among group members, and ensure fairness and
transparency in the recommendation process.

There have been many attempts to delineate
algorithms for GRS and define proper methods of
evaluating fairness in the group recommendations.
Masthoff [3] offers a possible definition of fairness
by observing how participants attempted to avoid
misery and starvation (in regards to individual user
preference), which reflected some algorithms such
as ‘Average Least Misery’ and ‘Average Without
Misery’. These values of utility would then be
assigned on a per-item basis.

This principle was also somewhat reflected in a



recently proposed method by Sacharidis [4], who
defines the most fair list as a list that minimizes the
dissatisfaction of any observed group member,
enforcing the Least Misery principle among group
utility. Group utility being defined as the average
member utility, and fairness as the minimum
member utility. However, it should be noted that for
Sacharidis’ fairness methodology, the values of
utility are assigned on a per-list basis.

However, it is important to note the caveat
delineated by Kaya [5], where it’s noted that current
methods do not define fairness in a rank-sensitive
way. Kaya pointed out that, although Least Misery
might replicate the most common human use of the
idea of fairness, it does not consider if the relevance
of the top-k items is balanced for users for each
prefix of the top-k, for example. In other words, if
you observe the first item alone, it should balance
the interests of all users. Then, for the top two items
taken together, the same must occur, and so on for
all top-k selections.

Other papers’ findings [6, 7] also make a strong case
for rank-sensitive definitions of fairness, considering
how attention towards top-displayed items tends to
be higher, and lower for last-displayed items. A
rank-sensitive approach would equalize this uneven
distribution of attention, while list-wise and
item-wise approaches might not reach similar
results.

One of the current challenges of GRS is performance
over large sets of data, and incomplete user-item
pairs. It is common to have those limitations in a RS
pipeline, and therefore it’s expected that similar
restrictions would be present in GRS (i.e. lacking the
budget to evaluate preferences of all user-item pairs,
or lacking information about all user-item pairs).

Furthermore, the various methods of evaluating
results—such as coupled and decoupled evaluation
as delineated by Peska and Malecek [8]—can
provide highly diverse findings considering both
approaches have underlying varying ratios of known
vs. unknown information, making it difficult to
choose the most appropriate method for each
scenario.

In this paper, we implement and review the more
prominent algorithms in GRS, test different top-k
limitations for the available data sent to the GRS,
check the final results with varying metrics in both
coupled and decoupled evaluations, and observe
possible challenges of each approach.

2.Methodology
The pipeline of data to results and evaluation is
demonstrated in Fig. 1. In summary, user-item data
was collected, groups of users were generated from
that data, recommendations for each group were
created based on nine different algorithms, then
finally those recommendations were evaluated
based on six different metrics, and this evaluation
was repeated for both coupled and decoupled

scenarios. More details are explained in the
following sections.

Fig. 1 - Pipeline delineating the progression of all steps
taken in this paper, from data towards final results.
Numbers used are the same as the section numbers
detailing the steps.

2.1 Data Collection
The basis of data was the MovieLens 1 million
dataset (ML-1M), which has 1 million ratings from
6000 users on 4000 movies, with a rating range of 0
to 5 (higher equals better rating). However, the
dataset was missing certain ratings for some
user-movie pairings. Thus, the dataset was
supplemented with predicted ratings based on
previous explicit ratings for each user, for a total of
approximately 12 million rows of ratings (6000
users with a total of 2020 ratings each). The
predictions were made using stratified K-Fold
division and prediction methods from an individual
RS, that are also later used as ground-truth for
decoupled evaluation.

With the full ratings file, various top-k restricted
files were created. The process of top-k restriction
iterates through the full ratings file, gets all per-user
ratings and orders them from highest to lowest.
Then it converts every rating except the top K
ratings of each user to zero. This effectively means
that the top-k restricted file only has true access to
the K-highest ratings of each user, and all other
ratings are zero. The top-k restricted files were
created as indicated by Tab. 1.

Tab. 1 - Definition of divisions for each top-k file, and
their true item total.

Name of file K value Percentage of
total user ratings

‘Topk-1’ 1 0.05 %

‘Topk-5’ 5 0.25 %

‘Topk-10’ 10 0.5 %



‘Topk-21’ 21 1 %

‘Topk-202’ 202 10 %

‘Topk-505’ 505 50 %

‘Topk-1010’ 1010 75 %

‘Topk-2020’ 2020 100 %

2.2 Grouping
Groups were synthetically generated with different
sizes (2, 4, and 8 users each group) and randomly
selected users. The groupings were tested for
similarity with Pearson’s Correlation Coefficient, as
can be seen in Fig. 2.

Fig. 2 - Correlation Coefficient of randomly generated
groups, with average similarity values used for
separation.

2.3 Recommendations
Recommendations were limited by a total of ten per
group. Each group had ten item recommendations
given for each of the nine chosen GRS aggregator
algorithms.

Additive Algorithm (ADD) [3] and the
Multiplicative Algorithm (MUL) [3] are similar in
their nature. Both aggregate the item ratings,
through addition and multiplication respectively,
and return the top items after ordering the results
from higher to lower ratings.

Least Misery Algorithm (LMS) [3] aggregates the
items by taking the minimum rating found in the
total ratings set from all users within the group, and
returns the top items. It is a conservative approach
to decision-making, as it aims to minimize the
potential for negative outcomes rather than
maximizing potential benefits. It is particularly
useful in situations where the consequences of a
decision could be significant and negative, such as in
medical or safety-critical applications. However, it
may not be appropriate in situations where it is
important to maximize positive outcomes or where
the consequences of a negative outcome are less
severe.

Most Pleasure Algorithm (MPL) [3] aggregates the
items by taking the maximum rating found in the

total ratings set from all users within the group, and
returns the top items. It is a more optimistic
approach to decision-making than the Least Misery
Algorithm, as it aims to maximize positive outcomes
rather than minimize negative ones. It is particularly
useful in situations where the consequences of a
decision are primarily positive, such as in marketing
or product design. However, it may not be
appropriate in situations where negative outcomes
could be severe or where it is important to balance
multiple criteria with different levels of importance.

GFAR Algorithm (GFAR) [5] is determined by
calculating the sum of probabilities that at least one
recommended item is relevant for the user. This is
represented as the complement of the probability
that all items are irrelevant. Relevance probabilities
of individual items are defined as the normalized
Borda-count induced by the individual preferences
of user 𝑢. GFAR follows a greedy approach to
generate its list in an iterative manner. However,
GFAR tends to select items that are per-user best
rather than focusing on items that have an (certain
level of) overall agreement, as it relies on a
somewhat extreme estimation of relevance
probability and assumes that a single relevant item
per user is fair enough. [8].

EPFuzzDA Algorithm (EPFuzzDA) [9] is the
approach that, for each user and each iteration,
EP-FuzzDA determines the relevance of items in a
list based on the proportional representation of
user's votes. It calculates the amount of
(constrained) relevance that is required to achieve
proportional representation and then selects the
item with the highest overall relevance, taking into
account certain constraints. Unlike other methods,
EP-FuzzDA tends to prioritize items with higher
overall agreement rather than focusing on the best
items for individual users. [8].

Fairness Algorithm (FAI) [3] simulates each
individual user picking items in turn based on their
own ordered ranking of preference, without
consideration for any other factors. User order is
randomly selected each time. It can fall into certain
pitfalls such as the total number of
recommendations being below the total number of
users in a group, making it so the last users do not
have a say in the resulting list. This algorithm was
not in the original set, and was implemented for this
paper.

Borda Count Algorithm (BDC) [3] assigns each
item a point value based on their ranking in each
user’s preference order. The item ranked first by a
user receives a certain number of points. The item
ranked second receives one fewer point, and so on,
with the last-ranked item receiving zero points.
After all the users have submitted their rankings and
the points are tallied, the top items with the highest
total number of points are selected. The Borda
Count is a form of preferential voting that aims to
determine the item who is preferred by the most
users overall, rather than simply the item who



receives the most first-place ranks. This algorithm
was not in the original set, and was implemented for
this paper.

Average Without Misery Algorithm (AVGNM) [3]
averages individual ratings, after excluding items
with individual ratings below a certain given
threshold (in our case, a rating of 1.0). A list of
allowed items (items above the threshold) is created
before averaging all resulting item ratings and
collecting the total amount of recommendations.
This algorithm was not in the original set, and was
implemented for this paper.

The resulting 10 items for each algorithm were
saved and compiled into a file. This process was
repeated for each top-k restricted file, and certain
algorithms performed differently depending on how
many user-item pairings they had access to.

2.4 Evaluation
The evaluations were divided into two types:
coupled and decoupled evaluation [8]. Coupled and
decoupled evaluation had binarized feedback set
with a positive threshold of 4.

The coupled evaluation [8] considered the original
ML-1M file to be its ground-truth for all iterations.
This means the predicted values for certain
user-item pairings are unknown to the evaluation,
regardless of top-k restrictions. Effectively, the
evaluation checks performance of the overall
solution considering withheld or unknown
information.

The decoupled evaluation [8] considered each
topk-restricted file to be the ground-truth in each
iteration. This simulates a scenario where all user
preferences are known to the system (where the
universe of preferences is the top-k ratings), and
only evaluates the GRS’s ability to combine those
preferences.

Both evaluations were done with all top-k restricted
files iteratively, and results were saved separately.
Only the Topk-1 file had a feedback polarity
debiasing of -3. Final results were separated by
algorithm, aggregating values among the various
group compositions with different approaches
(mean, min and minmax).

2.5 Metrics
Six commonly used metrics were employed to check
the performance of each algorithm: Normalized
Discounted Cumulative Gain (NDCG), Discounted
Cumulative Gain (DCG), Recall, Bounded Recall
(works similarly to Recall, with the only difference
being that the denominator checks for a minimum
between correct items and recommended items,
instead of just using correct items in the “normal”
Recall), Discounted First Hit (DFH), and Mean
Reciprocal Rank (MRR).

3. Results

All top-k variations and their nine algorithms, both
coupled and decoupled, were checked with the six
different metrics. Most notable are the variations
between very small top-k numbers such as Fig. 3
and Fig. 4, and bigger top-k values such as Fig. 5 and
Fig. 6. They were chosen as they demonstrated the
variation between smaller, medium and larger
values for top-k the best.

Fig. 3 - Coupled and decoupled results for dataset with
only the top 0.05% (1) item that each user rated.



Fig. 4 - Coupled and decoupled results for dataset with
only the top 0.5% (10) items that each user rated.

It is important to note that, since the total number of
recommendations is ten, some top-k restrictions
such as Fig. 3 are working with less user preference
data than the algorithm will eventually recommend.
Top-k restrictions such as in Fig. 4 are working with
exactly the same amount of data that the algorithm
will eventually recommend (ten user-item pairs).
This has a significant impact on final results,
especially with certain algorithms that depend on
user-item pairings more.

As can be observed in Fig. 3 and Fig. 4, when the
top-k value is lower than the total expected
recommendations, the AVGNM algorithm can
recommend less than the expected number of items,
regardless of having the AVGNM threshold done
before or after the selection of available items. This
happens because there are not enough items in the
top-k restricted file that are above the threshold
value set. Evidently, in Fig. 5 and Fig. 6, this noted
phenomenon does not occur when there are enough
items in the top-k restriction.

Fig. 5 - Coupled and decoupled results for dataset with
only the top 10% (202) items that each user rated.

In the case of comparing coupled and decoupled
values, the decoupled graphs of most top-k
restrictions tend to have higher values for their
metrics. This is because, as explained earlier in
section 2.4, the decoupled method takes the
topk-restricted file to be the ground-truth of the
matter.

To see figures of all top-k variations, please visit the
folder “/eval_img_results/” in the github repository:
(https://github.com/lpeska/GRS_eval_props).

https://github.com/lpeska/GRS_eval_props


Fig. 6 - Coupled and decoupled results for dataset with
only the top 100% (2020) items that each user rated.

4. Conclusion
While lower top-k values favoured algorithms such
as MPL and EPFuzzDA, higher top-k values favoured
algorithms such as MUL and LMS. This is in
accordance with the current understanding of the
EPFuzzDA algorithm performing better with harsher
top-k restrictions and its list-wise approach [9].

When using top-k restrictions that were below the
total number of expected recommendations, the
MUL, LMS, and GFAR algorithms could not offer
significant results. Algorithms such as MPL, FAI and
AVGNM remained relatively consistent regardless of
top-k restrictions.

These results, when compiled, could be skewed by
different definitions of ‘fairness’ in regards to
evaluation. Regardless, the top-k restriction has a
significant impact on the performance of a given GRS
algorithm, considering the metrics observed.

5. References
[1] Konstan, J. A., & Riedl, J. (2012). Recommender

systems: from algorithms to user experience.
User modeling and user-adapted interaction, 22,

101-123.

[2] Shani, G., & Gunawardana, A. (2011). Evaluating
recommendation systems. Recommender systems
handbook, 257-297.

[3] Masthoff, J. (2010). Group recommender
systems: Combining individual models. In
Recommender systems handbook (pp. 677-702).
Boston, MA: Springer US.

[4] Sacharidis, D. (2019, April). Top-n group
recommendations with fairness. In Proceedings
of the 34th ACM/SIGAPP symposium on applied
computing (pp. 1663-1670).

[5] Kaya, M., Bridge, D., & Tintarev, N. (2020,
September). Ensuring fairness in group
recommendations by rank-sensitive balancing of
relevance. In Proceedings of the 14th ACM
Conference on Recommender Systems (pp.
101-110).

[6] Zhao, Q., Chang, S., Harper, F. M., & Konstan, J. A.
(2016, September). Gaze prediction for
recommender systems. In Proceedings of the 10th
ACM Conference on Recommender Systems (pp.
131-138).

[7] Joachims, T., Granka, L., Pan, B., Hembrooke, H.,
Radlinski, F., & Gay, G. (2007). Evaluating the
accuracy of implicit feedback from clicks and
query reformulations in web search. ACM
Transactions on Information Systems (TOIS),
25(2), 7-es.

[8] Peska, L., & Malecek, L. (2021). Coupled or
Decoupled Evaluation for Group
Recommendation Methods?. In Perspectives@
RecSys.

[9] Malecek, L., & Peska, L. (2021, June).
Fairness-preserving group recommendations
with user weighting. In Adjunct Proceedings of
the 29th ACM Conference on User Modeling,
Adaptation and Personalization (pp. 4-9).hani, G.,
& Gunawardana, A. (2011). Evaluating
recommendation systems. Recommender systems
handbook, 257-297.


